Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177608

RESUMO

The European Commission (EC) has published a European Union (EU) Road Safety Framework for the period 2021 to 2030 to reduce road fatalities. In addition, the EC with the EU Directive 2019/1936 requires a much more detailed recording of road attributes. Therefore, automatic detection of school routes, four classes of crosswalks, and divided carriageways were performed in this paper. The study integrated satellite imagery as a data source and the Yolo object detector. The satellite Pleiades Neo 3 with a spatial resolution of 0.3 m was used as the source for the satellite images. In addition, the study was divided into three phases: vector processing, satellite imagery processing, and training and evaluation of the You Only Look Once (Yolo) object detector. The training process was performed on 1951 images with 2515 samples, while the evaluation was performed on 651 images with 862 samples. For school zones and divided carriageways, this study achieved accuracies of 0.988 and 0.950, respectively. For crosswalks, this study also achieved similar or better results than similar work, with accuracies ranging from 0.957 to 0.988. The study also provided the standard performance measure for object recognition, mean average precision (mAP), as well as the values for the confusion matrix, precision, recall, and f1 score for each class as benchmark values for future studies.

2.
Sensors (Basel) ; 22(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35898014

RESUMO

The United Nations (UN) stated that all new roads and 75% of travel time on roads must be 3+ star standard by 2030. The number of stars is determined by the International Road Assessment Program (iRAP) star rating module. It is based on 64 attributes for each road. In this paper, a framework for highly accurate and fully automatic determination of two attributes is proposed: roadside severity-object and roadside severity-distance. The framework integrates mobile Lidar point clouds with deep learning-based object detection on road cross-section images. The You Only Look Once (YOLO) network was used for object detection. Lidar data were collected by vehicle-mounted mobile Lidar for all Croatian highways. Point clouds were collected in .las format and cropped to 10 m-long segments align vehicle path. To determine both attributes, it was necessary to detect the road with high accuracy, then roadside severity-distance was determined with respect to the edge of the detected road. Each segment is finally classified into one of 13 roadside severity object classes and one of four roadside severity-distance classes. The overall accuracy of the roadside severity-object classification is 85.1%, while for the distance attribute it is 85.6%. The best average precision is achieved for safety barrier concrete class (0.98), while the worst AP is achieved for rockface class (0.72).


Assuntos
Acidentes de Trânsito/prevenção & controle , Materiais de Construção/normas , Viagem/tendências , Nações Unidas/legislação & jurisprudência , Croácia , Coleta de Dados , Segurança , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...